Role of TRPV1 and intracellular Ca in excitation of cardiac sensory neurons by bradykinin
نویسندگان
چکیده
Wu Z-Z, Pan H-L. Role of TRPV1 and intracellular Ca in excitation of cardiac sensory neurons by bradykinin. Am J Physiol Regul Integr Comp Physiol 293: R276–R283, 2007. First published May 9, 2007; doi:10.1152/ajpregu.00094.2007.—Bradykinin is an important mediator produced during myocardial ischemia and infarction that can activate and/or sensitize cardiac spinal (sympathetic) sensory neurons to trigger chest pain. Because a long-onset latency is associated with the bradykinin effect on cardiac spinal afferents, a cascade of intracellular signaling events is likely involved in the action of bradykinin on cardiac nociceptors. In this study, we determined the signal transduction mechanisms involved in bradykinin stimulation of cardiac nociceptors. Cardiac dorsal root ganglion (DRG) neurons in rats were labeled by intracardiac injection of a fluorescent tracer, 1,1 -dioctadecyl-3,3,3 ,3 -tetramethylindocarbocyanine percholate (DiI). Whole cell current-clamp recordings were performed in acutely isolated DRG neurons. In DiI-labeled DRG neurons, 1 M bradykinin significantly increased the firing frequency and lowered the membrane potential. Iodoresiniferatoxin, a highly specific transient receptor potential vanilloid type 1 (TRPV1) antagonist, significantly reduced the excitatory effect of bradykinin. Furthermore, the stimulating effect of bradykinin on DiI-labeled DRG neurons was significantly attenuated by baicalein (a selective inhibitor of 12-lipoxygenase) or 2-aminoethyl diphenylborinate [an inositol 1,4,5-trisphosphate (IP3) antagonist]. In addition, the effect of bradykinin on cardiac DRG neurons was abolished after the neurons were treated with BAPTA-AM or thapsigargin (to deplete intracellular Ca stores) but not in the Ca -free extracellular solution. Collectively, these findings provide new evidence that 12-lipoxygenase products, IP3, and TRPV1 channels contribute importantly to excitation of cardiac nociceptors by bradykinin. Activation of TRPV1 and the increase in the intracellular Ca are critically involved in activation/sensitization of cardiac nociceptors by bradykinin.
منابع مشابه
Role of TRPV1 and intracellular Ca2+ in excitation of cardiac sensory neurons by bradykinin.
Bradykinin is an important mediator produced during myocardial ischemia and infarction that can activate and/or sensitize cardiac spinal (sympathetic) sensory neurons to trigger chest pain. Because a long-onset latency is associated with the bradykinin effect on cardiac spinal afferents, a cascade of intracellular signaling events is likely involved in the action of bradykinin on cardiac nocice...
متن کاملCalcium entry via TRPV1 but not ASICs induces neuropeptide release from sensory neurons.
Inflammatory mediators induce neuropeptide release from nociceptive nerve endings and cell bodies, causing increased local blood flow and vascular leakage resulting in edema. Neuropeptide release from sensory neurons depends on an increase in intracellular Ca(2+) concentration. In this study we investigated the role of two types of pH sensors in acid-induced Ca(2+) entry and neuropeptide releas...
متن کاملRole of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat
Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...
متن کاملCaged vanilloid ligands for activation of TRPV1 receptors by 1- and 2-photon excitation.
Nociceptive neurons in the peripheral nervous system detect noxious stimuli and report the information to the central nervous system. Most nociceptive neurons express the vanilloid receptor, TRPV1, a nonselective cation channel gated by vanilloid ligands such as capsaicin, the pungent essence of chili peppers. Here, we report the synthesis and biological application of two caged vanilloids: bio...
متن کاملGeneral anesthetics sensitize the capsaicin receptor transient receptor potential V1.
General anesthetics (GAs) are central nervous system depressants that render patients unresponsive to external stimuli. In contrast, many of these agents are also known to stimulate peripheral sensory nerves, raising the possibility that they may exacerbate tissue inflammation. We have found that pungent GAs excite sensory neurons by directly activating the transient receptor potential (TRP) A1...
متن کامل